References

All the sources I used throughout the project

Citations

Ades, F., Tryfonidis, K., & Zardavas, D. (2017). The past and future of breast cancer treatment—from the papyrus to individualised treatment approaches. Ecancermedicalscience,11. doi:10.3332/ecancer.2017.746


American Cancer Society. Cancer Treatment and Survivorship Facts & Figures 2014-2015. Atlanta: American Cancer Society; 2014


Bronte, V., Brandau, S., Chen, S., Colombo, M. P., Frey, A. B., Greten, T. F., . . . Gabrilovich, D. I. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications,7(1). doi:10.1038/ncomms12150


Gabrilovich, D. I. (2017). Myeloid-Derived Suppressor Cells. Cancer Immunol Res.,5(1), 3-8. doi:10.1158/2326-6066.CIR-16-0297


Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology,9(3), 162-174. doi:10.1038/nri2506


Greten, T. F., Manns, M. P., & Korangy, F. (2011 jul). Myeloid derived suppressor cells in human diseases. Int Immunopharmacol.,11(7), 802-807. doi:10.1016/j.intimp.2011.01.003


Hansen, G. L., Gaudernack, G., Brunsvig, P. F., Cvancarova, M., & Kyte, J. A. (2015). Immunological factors influencing clinical outcome in lung cancer patients after telomerase peptide vaccination. Cancer Immunology, Immunotherapy,64(12), 1609-1621. doi:10.1007/s00262-015-1766-5


Immunotherapy. (n.d.). Retrieved from https://www.cancer.gov/about-cancer/treatment/types/immunotherapy


Islam, M. S. (2017). CRISPR-Cas9: A Game Changing Tool in Cancer Research. Current Trends in Biomedical Engineering & Biosciences,9(2). doi:10.19080/ctbeb.2017.09.555760


Keown, S. (2016, April 25). 93 percent of advanced leukemia patients in remission after immunotherapy. Retrieved from https://www.fredhutch.org/en/news/center-news/2016/04/advanced-leukemia-remission-immunotherapy.html


Ostrand-Rosenberg, S., Sinha, P., Figley, C., Long, R., Park, D., Carter, D., & Clements, V. K. (2016). Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal–fetal tolerance in mice. Journal of Leukocyte Biology,101(5), 1091-1101. doi:10.1189/jlb.1hi1016-306rr


Plesca, M., Bordea, C., El Houcheimi, B., Ichim, E., & Blidaru, A. (2016 apr-jun). Evolution of radical mastectomy for breast cancer. J Med Life,9(2), 183-186.


Pulaski, B. A., & Ostrand-Rosenberg, S. (2001). Mouse 4T1 Breast Tumor Model. Current Protocols in Immunology. doi:10.1002/0471142735.im2002s39


Umansky, V., Blattner, C., Gebhardt, C., & Utikal, J. (2016). The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines,4(4), 36. doi:10.3390/vaccines4040036


Veglia, F., Perego, M., & Gabrilovich, D. (2018). Myeloid-derived suppressor cells coming of age. Nature Immunology,19(2), 108-119. doi:10.1038/s41590-017-0022-x


Ventola, C. L. (2017 aug). Cancer Immunotherapy, Part 3: Challenges and Future Trends. P T,42(8), 514-521.


Weber, R., Fleming, V., Hu, X., Nagibin, V., Groth, C., Altevogt, P., . . . Umansky, V. (2018). Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology,9. doi:10.3389/fimmu.2018.01310


Yi, P., Liang, Y., Yuan, D. M., Jie, Z., Kwota, Z., Chen, Y., . . . Sun, J. (2017, June 20). A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. doi: 10.1038/s41598-017-04260-0 Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478593/


Zöller, M., Zhao, K., Kutlu, N., Bauer, N., Provaznik, J., Hackert, T., & Schnölzer, M. (2018). Immunoregulatory Effects of Myeloid-Derived Suppressor Cell Exosomes in Mouse Model of Autoimmune Alopecia Areata. Frontiers in Immunology,9. doi:10.3389/fimmu.2018.01279

©2019 by Anjali Kalagiri. Proudly created with Wix.com

This site was designed with the
.com
website builder. Create your website today.
Start Now